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Measurement of the Laboratory’s Absolute Velocity
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Abstract

The report is given on a local measurement of the absolute velocity of a laboratory. This is
the resultant velocity due to all types of motion in which the laboratory takes part (about
the Earth’s axis, about the Sun, about the galactic center, about the center of the cluster

of galaxies).

Harress (1912) and Sagnac (1913) established that the velocity of light is
direction dependent with respect to a rotating disk. Michelson, Gale, and Pear-
son (1925) showed that such direction dependence exists also for the spinning
earth.

Until now the “Sagnac effect” has been measured only for closed paths of
the light beams where the effect is proportional to the angular rotational veloc-
ity. We measured the “Sagnac effect” for light beams proceeding along a straight
line where the effect is proportional to the linear rotational velocity. Michelson,
Gale, and Pearson measured only the diurnal angular rotational velocity, since
the yearly and galactic angular rotational velocities are too small to be detected.
We registered the galactic and supergalactic linear rotational velocities and small
changes in their sum due to the yearly rotation, when performing the measure-
ment during the different days of the year; the diurnal changes, being very small,
could not be registered.

To measure the Sagnac effect along a straight line, one has to realize a
- Newtonian time synchronization [1] between spatially separated points. We
Succeeded in making such a synchronization with the help of a rotating axle.

The scheme of our interferometric “coupled-mirrors” experiment, with
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Fig. 1. The interferometric “coupled-mirrors™ experiment.

whose help we measured the laboratory’s absolute velocity, is the following
(Figure 1).
Let us have a shaft with length d on whose ends there are two disks with
radius R. On the rims of the disks, two mirrors RM, and RM, are fixed which
we call the rotating mirrors. Monochromatic parallel light emitted by the source
S, (or S,) is partially reflected and partially refracted by the semitransparent
mirror SM; (SM,). The “transmitted” beam is then reflected successively by
the mirror M, (M), by the rotating mirror RM, (RM,), again by M, ,SM,
(M, ,SM,), and the observer O; (O, ) registers the interference which the
“transmitted” beam makes with the “reflected’ beam, the last one being re-
flected by the rotating mirror RM; (RM;) and transmitted by SM, (SM,).
We call the direction from RM, to RM, “direct” and from RM, to RM, |
“opposite.” |
Let us now set the shaft in rotation with angular velocity € and let us putin |
action the shutters Sk, and Sh, which should allow light to pass through them - |
only when the rotating mirrors RM; and RM, are perpendicular to the inci- |
dent beams. This synchronization was performed by making the opening of the
| shutters (=107° sec) be governed by the rotating shaft itself. Later we realized
that the shutters are not necessary and we used simple slits placed along the light |
| paths to the rotating mirrors. !
If, at rest, the “transmitted” light pulse reaches the second rotating mirror in |
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the position RM,(RM,) when the first rotating mirror is in the position RM,

,), then, in the case of rotating shaft, the “transmitted” pulse will r®ach the
second rotating mirror in the position RM; (RM ) when the velocity of light is
equal to ¢, and in the position RM 3 (RM7) when the velocity of light is equal
10 - v(c +v). Denoting by & the angle between the radii of RM; and RM 5
(RM, and RM ") and by @ the angle between the radii of RM3 and RM;

(RM 1 and RM 1), we shall have
d

Sta=—— (1)
cFD ¢

from where (assuming v << ¢) we get & = Q dv/c?.

The difference in the difference of the optical paths of a “transmitted” and
a “reflected” light pulse which interfere in the cases of presence and nonpresence
of an “aether wind” with velocity v will be

dRQ
u=2d‘—::’-’§ )

A= JaR = ==
c
where v, is the linear velocity of the rotating mirrors.

If the wavelength of the light is A and we maintain an angular velocity §2 =
2aN (N is the number of revolutions per second), then, during a rotation of the
apparatus over 360° about an axis perpendicular to the absolute velocity v, the
observers 0, and O, should register changes in their interference pictures within

A

dRN
Z=I=4'ﬂ' P v (3)

wavelengths.

In our actual setup, the “direct” beams are tangent to the upper parts of the
rotating disks, while the “opposite™ light beams are tangent to their lower parts.
Thus the reflection of the “direct™ and “opposite” beams proceeds on the same
planes of the mirrors. The “observers” in our actual setup represent two photo-
resistors which are put in the “arms” of a Wheatstone bridge. The changes in
both interference pictures are exactly opposite. Thus in our apparatus the
mirrors RM; and RM,, are exactly parallel and the photoresistors are illuminated
Mot by a pattern of interference fringes but uniformly. .

A very important difference between the deviative “coupled-mirrors™ experi-
ment [2] and the present one, which we call interferometric, is that the effect
registered in the latter is independent of small variations in the rotational veloc-
ity. In the interferometric variant one need not keep the illumination over one
of the photoresistors constant by changing the velocity of rotation when rotating
'h'-llXis of the apparatus, but need merely register the difference in the illumi-
fations over the photoresistors during the rotation. This (together with the high
'tlﬂ}utiun of the interferometric method) is the most important advantage of
the interferometric “coupled-mirrors” experiment.
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Since the illumination over the photoresistors changes with the change in
the difference in the optical paths of the “reflected” and “transmitted” beams
according to the sine law, the apparatus has the highest sensitivisy when the
illumination over the photoresistors is the average one (for maximum and mini-
mum illumination the sensitivity falls to zero). Hence a change in the velocity of
rotation leads to a change in the sensitivity. Let us consider this problem.

If the resistance of the photoresistors changes linearly with the change in
the illumination (as was the case in our setup), then to a small change d/ in the

energy flux density a change

!max

dWdeI=~k—i—sinwdqo (4)

in the resistance of the photoresistors will correspond, k being a constant, | =
the maximum possib!. energy (light) flux density, and ¢ the difference between
the phases of the intensities in the “reflected” and “transmitted” beams.
For a change Ay = w the resistance will change with W= -kl ., as follows
after the integration of equation (4). ;
Since it is Ap = 2mA/ A, then for ¢ = n/2, where the sensitivity is the highest, . |
we shall have AW/W = nA/\. Substituting this into equation (3), we obtain "

i Ac? .AW
47*dRN W

v G)

The measuring method is: We set such a rotational rate NV, that the illumi-
nation over the photoresistors will be minimum. Let us denote the resistance of |
the photoresistors under such a condition by Wy and W, (it must be Wy = W,). :
We put the same constant resistances in the other two arms of the bridge,so |
that the same current J, (called the initial current) will flow through the arms of
the photoresistors, as well as through the arms of the constant resistors, and no ‘,,
current will flow through the galvanometer in the bridge’s diagonal. Then we
set such a rotational rate NV, that the illumination over the photoresistorsis
maximum and we connect in series with them two variable resistors, W, so that e
again the initial current J,, has to flow through all arms of the bridge. After that
we make the illumination average, setting a rotational rate N = (N; + N,)/2and =
we diminish correspondingly the variable resistors, so that again the initial cur-
rent has to flow through all arms of the bridge and no current in the diagonal
galvanometer. Now if we rotate the axis of the apparatus from a position per-
pendicular to its absolute velocity to a position parallel to its absolute velocity
and we transfer resistance AW from the arm where the illumination over the &
photoresistor has decreased to the arm where it has increased, again the same
initial current will flow through all arms and no current through the diagonal =
galvanometer. The absolute velocity is then to be calculated from equation (5) &

When the illuminations over the photoresistors were averaged a change §W= ¢

o) T 3
I B ) A ek
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g X 10~* W in any of the arms of the photoresistors (positive in the one and
negative in the other) could be discerned from the fluctuations of the bridge’s
gxl\'&nﬂmeter, and thus the resolution was

dv=———"+— =17 km/sec el

The errors that can be introduced from the imprecise values of d = 140 c¢m,
R =400 cm, N = 120 rev/sec, and A = 633 nm (a He-Ne laser) are substantially
smaller than the resolution and can be ignored. To guarantee sufficient certainty,
we take Su = 20 km/sec.

The experiment was not performed in vacuum.

The room was not temperature controlled, but it is easy to calculate that
reasonable thermal and density disturbances of the air along the different paths
of the interfering light beams cannot introduce errors larger than the accepted
one.

The whole apparatus is mounted on a platform which can rotate in the
horizontal plane and the measurement can be performed in a couple of seconds.

The magnitude and the apex of the Earth’s (laboratory’s) absolute velocity
have been established as follows: '

During a whole day we search for the moment when the Wheatstone bridge
is in equilibrium if the axis of the apparatus points east-west. At this moment
the Earth’s absolute velocity lies in the plane of the laboratory’s meridian. Thus,
turning the axis of the apparatus north-south, we can measure v in the hori-
zontal plane of the laboratory. The same measurement is to be made after 12 hr.
As can be seen from Figure 2, the components of the Earth’s absolute velocity
in the horizontal plane of the laboratory for these two moments are

vo=vsin(®-y), vp=vsin(®+gy) @)

where ¢ is the latitude of the laboratory and 8 is the declination of the apex.
From these we obtain

, = [v2 + 9} - 2050, (cos® ¢ - sin” )] V2
2sinpcosy
+uv (8)
tan § = 2—2 @
b~ Ua

We take v, and v}, as positive when they point to the north and as negative when
they point to the south. Obviously, the apex of the absolute velocity points to
the meridian of this component whose algebraic value is smaller. Thus we shall
always assume v, < vp and then the right ascension & of the apex will be equal
tﬂ: the local sideral time of registration of v,. We could establish this moment
within a precision of +15 min. Thus we can calculate (with an accuracy not larger
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5
Fig. 2. The components of the laboratory’s absolute velocity in the plane of the meridian.

than +5 min) the sideral time #g; for the meridian where the local time is the
same as the standard time 7, of registration, taking into account that sideral
time at a middle midnight is as follows:

22 September: o" 23 March: 2"
22 October: o 23 April: 14"
22 November: 4n 23 May: 16
22 December: 6" 22 June: 3
21 January: gh 23 July: 20"
21 February: 10" 22 August: 22"

OQur first measurement of the Earth’s absolute velocity with the help of the
interferometric “coupled-mirrors” experiment was performed on 12 July 1975
in Sofia (¢ = 42°41', A = 23°21"). We registered

v, = -260 £ 20 km/sec,  (fy)y = 18" 37™ £ 15™
vy = 480 £ 20 km/sec,  (ty), = 6" 31™ £ 15™
Thus
v =279 £ 20 km/sec 2
o B (10)
§=-26"14°, a=(t;),=14" 23" £20™

We repeated the measurement exactly six months later on 11 January 1976 -
when the Earth’s rotational velocity about the Sun is oppositely directed. We
registered

v, =-293 + 20 km/sec, (fs), = 6" 24™ £15™

(1) -
vy =+121 + 20 km/sec, (fg)p = 18" 23™ £ 15™
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Thus
v =327 + 20 km/sec

(12)
5=-21°+4° a=(t;), = 14" 11™ £ 20™

For v and & we have taken the root-mean-square error, supposing for sim-
plicity ¢ = 45°. The right ascension is calculated from the moment when v, is
registered, i.e., from (£s)a, since for this case (Jv, | > |vp [) the sensitivity is
petter. If our measurements are accurate enough, then f;, which is taken as the
second, must differ with 1 1" 58™ from f, which is taken as the first, because
of the difference between solar and sideral days.

The magnitude and the equatorial coordinates of the apex of the Sun’s
absolute velocity will be given by the arithmetical means of the figures obtained
for the Earth’s absolute velocity in July and January:

v =303 + 20 km/sec

: (13)
§=-23°+4°, a=14" 17" +20™

Wﬂkhasah and Corey [3], analyzing the slight anisotropy in the cosmic
background radiation, obtained the following figures for the Earth’s absolute
velocity (the epoch is not given):

v =320 + 80 km/sec .
§=-21°%21°, a=12"z1" s

It is beyond doubt that the absolute velocity of the laboratory measured by
our method locally and when observing the slight anisotropy of the cosmic
background radiation is the same physical quantity.

In Figure 3 we show the different rotational velocities in which our Earth
takes part: vg is the Earth’s velocity about the Sun, which changes its direction
with a period of one year; vg is the Sun’s velocity about the galactic center,
which changes its direction with a period of 200 millions years; v is the geo-
metrical sum of these two and of the velocity of our Galaxy about the center of
the galactic cluster, which we measure with our apparatus. If we subtract geo-
metrically vg (vg = 250 km/sec, 8 = 27° 51°, a = 19" 28™) from v [see the
figures in equation (13)] , we shall obtain the rotational velocity of our galaxy.

Let us now compare the figures in equation (10) with these obtained in 1973
with the help of the deviative “coupled-mirrors” experiment [2].In 1973 the
axis of the apparatus was fixed in the horizontal plane with an azimuth 4" =
84°. For the sake of simplicity (see Figure 3), we shall assume 4 =90°.Ina
day the axis of the deviative “coupled-mirrors” implement rotated in a plane
parallel to the equatorial and thus the velocity veq = 130 * 100 km/sec, which
we measured, was the projection of the absolute velocity v in the equatorial
plane. Proceeding from Figure 3, we obtain veq = 251 km/sec, if we use the
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Fig. 3. The Earth in summer viewed from the Sun at about noon for Sofia. The “direct™
direction of the implement points from the east to the west.

figures in (10). On 12 July the maximum effect in the deviative variant must be
registered 6 hr before the registration of v, and vy, i.e., it must be #4;, = ot 3105
fopp = 127 37™ . We established t4;; = 3" * 2", 15, = 15" + 2" in the period :
between 25 July and 23 August. Thus the reduction of Zg;y, £5pp to the first

days of August (the average of our 1973 measurements) should increase the

differences between Lgir, fopp and Zgir, £ opp - The reduction of 4 =90° to 4" =
84° will, however, diminish these differences and the difference between vgq and
veq. Nevertheless, despite the perceptible differences between the figuresob-
tained in 1973 and 1975, we are even surprised that our very imperfect deviative
“coupled-mirrors™ experiment led to such relatively good results. ]

Note Added in Proof

During the lectures which I gave in the last two years in several European
and American universities and on scientific congresses, inevitably one and the
same question has been posed: Is the effect registered in my “coupled-mirrors™
experiments due to a certain rotational velocity of the laboratory, thus repre-
senting a non-inertial effect known to physics for 70 years, or this is an inertial
effect due to the uniform velocity of the laboratory with respect to the world
aether, thus disproving categorically the principle of relativity. To all persons
who posed this question I remembered Archimedus’ theorem about the inexis-
tance of a most big number (“To any number big enough always can be found
another one which will be bigger™). I formulated a similar theorem: To any
enough uniform velocity always can be found a point in the world, so that the
motion with this “inertial” velocity can be considered as a rotation about this
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center. This theorem thus affirms that the motion of any material object in our
world is non-inertial. Is, however, saved in this way the principle of relativity?
No, it isn’t. My “coupled-mirrors” experiments impel the scientific community
to definitely reject the principle of relativity as not adequate to physical reality
and restore the aether model of light propagation.

After the discovery of a “new aether wind” when analysing the slight aniso-
tropy in the cosmic background radiation, the leading scientists tried to save the
principle of relativity, arguing that one has registered the “relative™ velocity of
the Earth with respect to a certain “material object” which is presented by the
isotropically propagating background radiation. Well, my “coupled-mirrors™
experiments represent registration of this “aether wind™ in a closed laboratory!
It is clear that to recognize the failure of the principle of relativity in the third
fourth of the Twentieth century is a very hard nut for the scientific community.
But this nut must be cracked. The sooner the better.

I must note that many scientists are doubtful whether I, indeed, have regis-
tered the effects reported in this paper and of the different high-velocity light
experiments reported in the monograph [4]. So, for example, Prof. P. Bergmann
wrote me a year ac2: “[ affirm that your*coupled-mirrors”experiment must give
a null result, and the effects registered by you are due to side causes.” In my
answer [ wrote: “If you shall publish this opinion in the press, I shall immedi-
ately send you $500.” I heard no more from Bergmann.

I should like to mention that my friend Prof. Prokhovnik, a member of the
organizing committee of the International Conference on Space-Time Absolute-
ness which had to meet in May, 1977 in Bulgaria but was prohibited by the
Bulgarian government, dedicated an excellent critical paper to the “coupled-
mirrors” experiment [5]. Prof. Prokhovnik, as Lorentz, Builder, Ives, and
Janossy, defends the conception of the world aether; however, according to him,
a certain “twist” will appear in the rotating axle which will annihilate the posi-
tive “aether wind” effect. I called this the “Lorentz twist” [6] . My experiments
undoubtedly show that such a hypothetical “Lorentz twist” does not exist.
According to my absolute space-time theory [1], the “Lorentz contraction”
does not represent a physical effect. The null result in the Michelson-Morley
experiment and the specific (not entirely Newtonian) character of the Lienard-
Wiechert potentials [1] impel us to introduce certain changes in the traditional
aether-Newtonian character of light propagation. I called this slightly revised
model (only within effects of second order in v/c) the aether-Marinov model
of light propagation [7].

Finally, I wish to inform the reader that in 1979, I carried out the differen-
tial “coupled-shutters” experiment in the Free University of Brussels, with
whose help for the first time in history the unidirectional light velocity has been
measured in a laboratory [8]. It is highly astonishing that the differential
“coupled-shutters” experiment represents, maybe, the most simple and easily
realisable experiment for a laboratory measurement of the light velocity, and can
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be set up in a couple of days in any college. It must be noted that the differen-
tial “coupled-shutters™ experiment offers better technical possibilities for regis-
tration of the laboratory’s absolute velocity than the interferometric “coupled- -

mirrors” experiment, and its theoretical explanation is much more simple. e
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